[image:]
Produced by Randy Fadler – January 2026

[bookmark: _Toc219444559]Executive Summary
Prompt Architecture: The Syntax of Solution
The Concept: Conversational prompts produce fragile code. To get production-ready solutions, we must stop "chatting" with AI and start "compiling" inputs. This booklet introduces Prompt-as-Code: treating English instructions as strict programming syntax.
The Framework We replace natural language with a disciplined 5-step architecture:
1. Structure: Divide prompts into rigid Import (Context), Declaration (Environment), and Logic (Algorithm) blocks.
2. Typing: Explicitly define input Parameters and output Return Values (e.g., "Return JSON only") to prevent formatting errors.
3. Safety: Mandate specific Error Handling and Logging rules within the prompt to manage failures.
4. Verification: Use Test-Driven Prompts, forcing the AI to write the test plan before the code.
The Result By architecting the prompt rather than asking for help, developers achieve deterministic, resilient, and high-quality code generation.

Booklet Proposal: "Prompt Architecture: The Syntax of Solution"
Chapter 1: The Philosophy of Structure
· Moving from "Chatting" to "Compiling."
· The ambiguity of natural language vs. the rigidity of code.
· The Golden Rule: The quality of the output is strictly bound by the structure of the input.
Chapter 2: The Anatomy of a Programmatic Prompt
· The Import Block: Defining the Persona (e.g., ROLE: Senior SQL Architect).
· The Declaration Block: Defining the user's environment (e.g., CONTEXT: PowerShell 7, Azure Module installed).
· The Logic Block: The specific request written in pseudo-code or step-by-step logic.
Chapter 3: Defining Interfaces (Parameters & Returns)
· How to declare input variables (e.g., $SourceFile, $DestinationTable).
· How to strictly define output format (e.g., RETURN: JSON object ONLY, no markdown prose).
Chapter 4: Exception Handling & Logging
· Instruction injection for error management.
· Example: "In the CATCH block, the script must write to EventLog ID 100."
Chapter 5: Test-Driven Prompts (TDP)
· Instructing the AI to write the Unit Test before writing the Code.
· Using the prompt to define the definition of done.

Table of Contents
Executive Summary	2
Chapter 1: The Philosophy of Structure	6
1.1 The Illusion of Conversation	6
1.2 The Ambiguity of Natural Language	6
1.3 The Golden Rule of Prompt Engineering	7
1.4 The Compiler Mindset	7
Summary of Chapter 1	7
Chapter 2: The Anatomy of a Programmatic Prompt	8
2.1 The Import Block (Context & Persona)	8
2.2 The Declaration Block (Environment & Constraints)	8
2.3 The Logic Block (The Execution Path)	9
Summary of Chapter 2	9
Chapter 3: Defining Interfaces (Parameters & Returns)	11
3.1 The Parameter Block: Stop Describing, Start Declaring	11
3.2 Strong Typing in Prompts	11
3.3 The Return Block: The Definition of Done	12
Summary of Chapter 3	12
Chapter 4: Exception Handling & Logging	13
4.1 The "Silent Failure" Problem	13
4.2 The Error Handling Block	13
4.3 The Logging Mandate	14
4.4 The "Uncertainty" Protocol	14
Summary of Chapter 4	14
Chapter 5: Test-Driven Prompts (TDP)	16
5.1 The TDD Mindset for Prompts	16
5.2 The Test Specification Block	16
5.3 The "Mental Sandbox" Simulation	17
5.4 The Definition of Done	17
Case Study 1: The PowerShell Service Restart	18
Case Study 2: The SQL Data Deduplication	19
Case Study 3: The Python Data Scraper	20

[bookmark: _Toc219444560]Chapter 1: The Philosophy of Structure
Subtitle: Moving from Chatting to Compiling
[bookmark: _Toc219444561]1.1 The Illusion of Conversation
When we interact with Large Language Models (LLMs), the interface—a blinking cursor in a chat window—deceives us. It invites us to be conversational, verbose, and casual. We treat the AI like a junior developer sitting at the next desk, assuming it shares our unstated context and human intuition.
This is the first failure point.
An LLM does not "know" what you want; it predicts what comes next based on probability. When you use conversational English (e.g., “Can you make this script a bit faster?”), you are introducing high variance. "Faster" could mean optimizing memory, reducing CPU cycles, or simply removing Start-Sleep commands.
To write effective prompts, you must abandon the idea of a conversation and adopt the mindset of a compiler. You are not "asking" for code; you are compiling a solution using English as your syntax.
[bookmark: _Toc219444562]1.2 The Ambiguity of Natural Language
Natural language is inherently "lossy." It relies on shared cultural and professional assumptions that the AI mimics but does not possess.
Consider the request: “Handle errors in this function.”
· The Conversational Interpretation: The AI wraps the code in a generic Try-Catch block that outputs a red text message to the console.
· The Programmatic Interpretation: A developer knows "handling errors" implies specific actions: terminating execution, logging to a file, incrementing a failure counter, or attempting a retry.
By shifting to a Prompt-as-Code philosophy, we stop relying on the AI’s interpretation of vague words. Instead of requesting "error handling," we define the CATCH parameters. We replace the ambiguity of prose with the rigidity of specifications.

[bookmark: _Toc219444563]1.3 The Golden Rule of Prompt Engineering
This philosophy rests on a single, immutable rule that defines this entire booklet:
The quality of the output is strictly bound by the structure of the input.
If your prompt is unstructured (a "blob" of text), the AI must spend its computational resources figuring out what you want before it can figure out how to do it.
If your prompt is structured (divided into Parameters, logic, and Returns), the AI can bypass the "intent discovery" phase and apply its full processing power to the execution of the logic.
[bookmark: _Toc219444564]1.4 The Compiler Mindset
To adopt this mindset, you must treat your prompt window as an IDE (Integrated Development Environment). Every prompt you write should have the distinct components of a well-written program function:
1. Imports: What context does the AI need? (e.g., "Act as a Senior DBA.")
2. Variables: What data is being processed? (e.g., "Input is a dirty CSV.")
3. Logic: What are the steps? (e.g., "Sanitize, then Insert.")
4. Returns: What is the specific output? (e.g., "A SQL Stored Procedure.")
When you view prompt writing through this lens, you stop being a user asking for help and become an architect defining a blueprint.

[bookmark: _Toc219444565]Summary of Chapter 1
· The Trap: Conversational language introduces variance and ambiguity.
· The Fix: Treat English instructions as syntax that needs to be "compiled."
· The Result: Structured inputs lead to deterministic, high-quality outputs.

[bookmark: _Toc219444566]Chapter 2: The Anatomy of a Programmatic Prompt
Subtitle: Building the Skeleton of Your Request
If a prompt is a program, it requires a defined architecture. Randomly mixing instructions, context, and data allows the "compiler" (the AI) to misinterpret dependencies. Instead, we divide our prompt into three distinct, immutable blocks: The Import Block, The Declaration Block, and The Logic Block.
[bookmark: _Toc219444567]2.1 The Import Block (Context & Persona)
In programming, the first lines of code often define dependencies—using System;, Import-Module ActiveDirectory, or #include <stdio.h>. These lines tell the compiler which libraries to load.
In prompt engineering, the Import Block performs the same function. It tells the AI which subset of its massive training data to prioritize.
· The Component: The Persona/Role.
· The Function: Narrowing the search space.
· The Syntax:
[ROLE]: Senior Database Administrator (SQL Server Focus)
[OBJECTIVE]: Performance Tuning

Why this works: When you define [ROLE]: Senior DBA, you are essentially "importing" the lexicon, best practices, and biases of that profession. The AI is less likely to suggest a naive solution (like a cursor) because "Senior DBAs" rarely use them. You are loading the correct "library" of knowledge before execution begins.
[bookmark: _Toc219444568]2.2 The Declaration Block (Environment & Constraints)
Before a function runs, it must understand its environment. In code, you might check for specific OS versions or define global constants. In a prompt, the Declaration Block sets the constraints that the code must live within.
If you skip this, the AI defaults to the most generic environment (usually the latest version of everything, or a mix of incompatible versions).
· The Component: Environmental Constants.
· The Function: Preventing compatibility errors and "hallucinated" features.
· The Syntax:
Plaintext
[ENVIRONMENT]: PowerShell 5.1 (Windows PowerShell)
[DEPENDENCIES]: Must use standard libraries only; no 3rd party modules.
[CONSTRAINTS]: Code must run on Windows Server 2016.

Why this works: By declaring PowerShell 5.1, you preemptively stop the AI from using PowerShell 7 features (like the ternary operator ? :) that would break your script in production. You are defining the "runtime environment."
[bookmark: _Toc219444569]2.3 The Logic Block (The Execution Path)
This is the body of your program—the main() function. However, instead of writing prose paragraphs, you write pseudo-code or numbered logical steps.
Prose allows the AI to "wander." Numbered logic forces the AI to follow a linear execution path.
· The Component: The Algorithm.
· The Function: Defining the step-by-step operations.
· The Syntax:
[EXECUTION FLOW]:
1. READ input CSV file $SourcePath.
2. VALIDATE header row matches expected schema.
3. TRANSFORM 'Date' column to ISO-8601 format.
4. IF validation fails: LOG to 'error.txt' and CONTINUE to next row.
5. EXPORT clean data to $DestPath.

Why this works: This structure creates a "mental checklist" for the model. It handles the logic sequentially (1, then 2, then 3). If you wrote this as a paragraph, the AI might hallucinate a step where it exports the data before validating it. The Logic Block enforces order of operations. Of course, detailed and more complex functions will require more steps and creativity when defining the logical sequence.

[bookmark: _Toc219444570]Summary of Chapter 2
· Import Block: Loads the "expert" library (Persona).
· Declaration Block: Defines the sandbox and strict limits (Environment).
· Logic Block: Dictates the specific order of operations (Algorithm).
By assembling these three blocks, you create a "Prompt Frame." In the next chapter, we will define the data that flows through this frame: the Parameters and Return Values.

[bookmark: _Toc219444571]Chapter 3: Defining Interfaces (Parameters & Returns)
Subtitle: Strictly Typing Your Inputs and Outputs
In traditional programming, a function without clearly defined inputs and outputs is a black box that causes bugs. The same is true for prompts. If you don't tell the AI exactly what it is receiving and exactly what it must give back, it will guess—and it will often guess wrong.
[bookmark: _Toc219444572]3.1 The Parameter Block: Stop Describing, Start Declaring
Most users describe their data in paragraphs: “I have a list of users in a CSV file, but some of them have missing dates.”
The "Programmatic Prompt" replaces this narrative with a Parameter Definition. This forces the AI to recognize the data structure before it attempts to process it.
· The Concept: Explicitly declare your "variables" at the top of the prompt.
· The Syntax:
PARAMETERS
[INPUT_DATA]: $UserList (CSV Format)
[COLUMNS]: FirstName, LastName, LastLoginDate (String, might be null)
[TARGET_SYSTEM]: Active Directory (Windows Server 2019)

Why this works: By defining LastLoginDate as "String, might be null," you preemptively solve the bug where the AI writes code that crashes on empty values. You are defining the schema of your input.
[bookmark: _Toc219444573]3.2 Strong Typing in Prompts
While you can't force an LLM to be a strongly-typed compiler, you can use strong-typing language to narrow its focus.
· Weak Prompt: "Make sure the age is a number."
· Strong Prompt: [CONSTRAINT]: $Age must be cast as [int]. Throw error if non-numeric.
Using technical data types (Array, Boolean, JSON Object, SQL Table Variable) triggers the AI's "developer mode." It signals that you expect code that adheres to strict data standards, not just a script that "looks right."
[bookmark: _Toc219444574]3.3 The Return Block: The Definition of Done
This is the most critical section for integrating AI into a workflow. If you want to use the AI's output in another script or document, you cannot afford "chatty" intros like “Here is the code you asked for...”
You need a clean return interface.
· The Concept: Dictating the exact format of the output.
· The Syntax:
RETURN VALUES
[FORMAT]: JSON Only.
[SCHEMA]: { "Script": "string", "UnitTests": "string" }
[NO_CHAT]: Do not include conversational filler or markdown explanations. Output raw text only.

Why this works: This essentially turns the AI into an API. You send a request, and you get back a structured object (like JSON or a pure code block) that you can immediately copy-paste or pipe into another tool without editing.
3.4 Handling "Void" Returns
Sometimes you don't want code; you want an action (like an analysis). Even then, use a return type.
· Example: RETURN: Boolean (True/False). True if the code provided is secure; False if vulnerability exists.

[bookmark: _Toc219444575]Summary of Chapter 3
· Parameters: Declare your inputs as variables, not stories.
· Typing: Use specific data types (Int, String, Array) to enforce logic.
· Returns: Strict output control (e.g., "JSON Only") allows for copy-paste reliability.

[bookmark: _Toc219444576]Chapter 4: Exception Handling & Logging
Subtitle: Managing Failure States and Visibility
In professional software development, "happy path" code (code that assumes everything goes right) is considered amateurish. Yet, 90% of AI-generated code is exactly that: happy path logic that breaks the moment a file is locked or a network connection drops.
This happens because LLMs optimize for the most probable token, and in training data, simple tutorials (which lack error handling) are more common than production-grade systems. To get robust code, you must explicitly program the failure states into your prompt.
[bookmark: _Toc219444577]4.1 The "Silent Failure" Problem
If you ask an AI to "write a script to copy files," it will likely use a simple command like Copy-Item. If that command fails, the script might display red text but keep running, potentially corrupting data.
In the Prompt-as-Code methodology, we never assume success. We define a specific block for Error Handling that instructs the AI on how to manage exceptions before it writes a single line of logic.
[bookmark: _Toc219444578]4.2 The Error Handling Block
You must dictate the "Sad Path" logic just as clearly as the "Happy Path." This block forces the AI to wrap its logic in Try-Catch (PowerShell/C#) or Begin-Try/End-Try (SQL) structures.
· The Component: Exception Management Rules.
· The Syntax:
ERROR HANDLING
[PREFERENCE]: Stop on all errors ($ErrorActionPreference = 'Stop').
[SCOPE]: Wrap entire execution logic in a Try/Catch block.
[ACTION_ON_FAIL]:
 1. Capture the specific Exception Message.
 2. Do NOT output raw red text to console.
 3. Run the [LOGGING] function defined below.
 4. Terminate script with Exit Code 1.

Why this works: The AI is forced to structure the code shell first. It cannot write a simple linear script because you have imposed a Try/Catch constraint that encompasses the entire logic.
[bookmark: _Toc219444579]4.3 The Logging Mandate
"Logging" to an LLM usually means Write-Host or print(). This is useless for production. You must define a Logging Interface within your prompt to ensure visibility.
· The Concept: Instruction Injection for Telemetry.
· The Syntax:
LOGGING SPECIFICATION
[DESTINATION]: C:\Logs\ScriptLog.txt
[FORMAT]: CSV format: "Timestamp, Severity, Message, UserID"
[REQUIREMENT]: Every "Action" step in the Logic Block must write a 'INFO' log entry.
[REQUIREMENT]: Every "Catch" block must write a 'ERROR' log entry including the Stack Trace.

Why this works: You are treating logging as a non-functional requirement. The AI now understands that "doing the work" is only half the job; "recording the work" is the other half.
[bookmark: _Toc219444580]4.4 The "Uncertainty" Protocol
Sometimes the error isn't in the code; it's in the prompt. If your instructions are ambiguous, the AI will usually guess (often incorrectly) to please you. You must program a Fail-Safe for the prompt itself.
· The Syntax:
Plaintext
AMBIGUITY PROTOCOL
IF any parameter or logic step is unclear or conflicts with Best Practices:
THEN stop generation and ask a Clarifying Question.
ELSE proceed with code generation.

Why this works: This grants the AI permission to say "I don't know." It prevents the generation of confident but hallucinated solutions.

[bookmark: _Toc219444581]Summary of Chapter 4
· Sad Path: Define what happens when things break (Retry? Crash? Skip?).
· Logging: strict formatting for logs (Timestamp, Severity, Message) prevents "console spam."
· Ambiguity: Explicitly instruct the AI to ask questions rather than guess.

[bookmark: _Toc219444582]Chapter 5: Test-Driven Prompts (TDP)
Subtitle: Ensuring Success Before Execution
In modern software engineering, Test-Driven Development (TDD) is a discipline where developers write the test before they write the code. This ensures that the code is written specifically to pass a clear set of requirements, rather than just "to work."
In Prompt-as-Code, we apply this same discipline. By forcing the AI to generate the test plan alongside (or even before) the solution, we force it to "think" about edge cases it would otherwise ignore.
[bookmark: _Toc219444583]5.1 The TDD Mindset for Prompts
When you ask an AI to "write a function that adds two numbers," it thinks about the syntax of addition. When you ask an AI to "write a function that passes a test expecting '2 + 2 = 4' and '2 + Null = Error'," it thinks about logic and validation.
Including a Test Specification in your prompt changes the AI's goal. The goal is no longer just "output code"; the goal is "pass these specific tests." This subtle shift drastically reduces logic errors.
[bookmark: _Toc219444584]5.2 The Test Specification Block
This block sits at the bottom of your prompt architecture. It tells the AI exactly how you intend to verify its work.
· The Component: The Acceptance Criteria.
· The Syntax:
TEST SPECIFICATION
[FRAMEWORK]: Pester 5 (PowerShell) / NUnit (C#) / PyTest (Python)
[REQUIRED_TESTS]:
 1. HAPPY_PATH: Input valid CSV -> Output 100 rows to SQL.
 2. EDGE_CASE: Input empty CSV -> Script logs warning and exits gracefully (Code 0).
 3. FAILURE_MODE: SQL Server Offline -> Script retries 3x, then logs Fatal Error.

Why this works: Even if you don't actually run these tests immediately, the act of defining them forces the AI to write the code to support them. For example, it cannot write a script that crashes on an empty CSV if it has already "seen" the requirement to pass a test for an empty CSV.
[bookmark: _Toc219444585]5.3 The "Mental Sandbox" Simulation
One of the most powerful techniques in advanced prompt engineering is asking the AI to "run" the code in its "mind" (context window) before showing it to you. This is called Chain-of-Thought Verification.
· The Concept: Self-Correction before output.
· The Syntax:
Plaintext
[VERIFICATION_STEP]:
Before outputting the final code, mentally simulate running the script against the [REQUIRED_TESTS] above.
IF the code would fail a test, REWRITE the code to pass.
OUTPUT only the final, verified code.

Why this works: LLMs are capable of spotting their own errors if asked to review them. This instruction forces a "drafting phase" that happens invisibly, resulting in a higher quality final output.
[bookmark: _Toc219444586]5.4 The Definition of Done
In this framework, a prompt is not complete until it answers the question: "How do I know this is right?"
By explicitly requesting the Unit Test Code as part of the RETURN VALUE (from Chapter 3), you get a script that is self-verifying.
· Example Return Requirement: RETURN: A single file containing the Function AND the Pester Unit Test block at the bottom.

Summary of Chapter 5
· Invert the Workflow: Define the pass/fail criteria before requesting the logic.
· Explicit Tests: List specific scenarios (Happy Path, Edge Case, Failure Mode).
· Simulation: Instruct the AI to "mentally test" the code to catch bugs before generating the response.

[bookmark: _Toc219444587]Case Study 1: The PowerShell Service Restart
Scenario: An administrator needs a script to restart a specific service on a list of remote servers.
❌ The "Before" Prompt (Conversational)
"Write a PowerShell script to restart the Spooler service on a list of servers. Make sure it checks if it's running first."
The Typical AI Output:
· Uses Restart-Service without checking if the server is online.
· Uses Write-Host for output (cannot be logged).
· Likely fails on the first server that is unreachable, stopping the entire script.
· Verdict: Fragile and dangerous for production.
✅ The "After" Prompt (Structured)
Plaintext
CONFIGURATION
[ROLE]: Senior Systems Engineer
[ENVIRONMENT]: PowerShell 5.1 (Windows Server 2016/2019)

FUNCTION SPECIFICATION
[NAME]: Restart-CriticalService
[INPUT]: $ServerList (String Array), $ServiceName (String)

LOGIC FLOW
1. PING $ServerName to verify connectivity.
 - IF Offline: Log Warning and SKIP to next server.
2. CHECK status of $ServiceName using Get-Service.
 - IF Status is 'Stopped', attempt Start.
 - IF Status is 'Running', attempt Restart.
3. VERIFY service is 'Running' after operation.
 - IF not running after 10 seconds: Throw Custom Error.

ERROR HANDLING
- Wrap remote calls in Try/Catch.
- On Error: Log generic error message + Exception Message to a CSV file.
- Do NOT stop script execution; continue to next server.

RETURN VALUES
- Output a Custom PSObject: {ServerName, ServiceName, OldStatus, NewStatus, Result}

The Result:
· The AI writes a script using Test-Connection (Ping) to prevent timeouts.
· It implements a Do-While loop to wait for the service to come up.
· It returns a clean object that can be exported to Excel (| Export-Csv).
· Verdict: Robust, auditable, and safe.

[bookmark: _Toc219444588]Case Study 2: The SQL Data Deduplication
Scenario: A developer needs to remove duplicate rows from a large SQL table based on email address, keeping the most recent entry.
❌ The "Before" Prompt (Conversational)
"I have a table with duplicates. Write a SQL query to delete the duplicates based on the Email column but keep the newest one."
The Typical AI Output:
· Often suggests a simple DELETE with a subquery or GROUP BY.
· Performance Risk: On large tables (1M+ rows), this approach creates massive transaction logs and locks the table.
· No safety check (doesn't allow you to preview what will be deleted).
· Verdict: High risk of data loss or server timeout.
✅ The "After" Prompt (Structured)
CONFIGURATION
[ROLE]: Senior SQL Database Administrator
[DIALECT]: T-SQL (SQL Server 2019)
[CONSTRAINT]: High Performance / Minimize Locking

TASK SPECIFICATION
[GOAL]: Remove duplicate rows from [Users] table.
[CRITERIA]: Duplicate = Same [EmailAddress].
[RETENTION]: Keep row with most recent [LastLoginDate].

EXECUTION LOGIC
1. USE a Common Table Expression (CTE) with the ROW_NUMBER() window function.
2. PARTITION BY [EmailAddress], ORDER BY [LastLoginDate] DESC.
3. SELECT the rows where RowNum > 1 (The duplicates).
4. **SAFETY STEP:** Comment out the actual DELETE statement; provide a SELECT statement first to verify data.

RETURN VALUES
- Provide the full T-SQL script.
- Include comments explaining *why* CTE is faster than a standard subquery.

The Result:
· The AI uses ROW_NUMBER(), which is the industry standard for efficient deduplication.
· It obeys the "Safety Step" by commenting out the destructive command (-- DELETE FROM CTE...), preventing accidental data loss.
· It optimizes for large datasets.
· Verdict: Professional-grade database maintenance.

[bookmark: _Toc219444589]Case Study 3: The Python Data Scraper
Scenario: A user wants to scrape product prices from a competitor's HTML file.
❌ The "Before" Prompt (Conversational)
"Can you write some Python code to read this HTML file and get all the prices out of the div class 'product-price'?"
The Typical AI Output:
· Uses Regular Expressions (Regex) to parse HTML (a major coding sin).
· Breaks immediately if the HTML structure changes slightly (e.g., a nested).
· Returns a simple list of numbers with no context (no product names).
· Verdict: Brittle and technically unsound.
✅ The "After" Prompt (Structured)
CONFIGURATION
[ROLE]: Python Backend Developer
[LIBRARY]: BeautifulSoup4 (bs4)

PARAMETERS
[INPUT]: local file 'page.html'
[TARGET_ELEMENT]: <div class="product-price">

LOGIC FLOW
1. LOAD file using 'utf-8' encoding to handle currency symbols.
2. PARSE HTML using 'BeautifulSoup'.
3. EXTRACT text from target element.
4. CLEAN data: Remove currency symbols ($) and whitespace; cast to Float.
5. EXCEPTION: If price is "Call for Quote", set value to -1.0.

TEST SPECIFICATION
[UNIT_TEST]:
- Input: "<div class='product-price'> $1,200.00 </div>" -> Output: 1200.0 (Float)
- Input: "<div class='product-price'> Call for Quote </div>" -> Output: -1.0 (Float)

RETURN VALUES
- Python Function definition.
- A '__main__' block demonstrating the usage.
The Result:
· The AI correctly imports BeautifulSoup (the proper tool) instead of using Regex.
· It handles the "Call for Quote" edge case which would have crashed a standard script.
· It casts the string "$1,200.00" to a float 1200.0 automatically because of step 4.
· Verdict: Resilient code that handles messy real-world data.

Conclusion of the Booklet
Final Thought: The difference between the "Before" and "After" prompts is not just formatting; it is intent. The conversational prompt hopes for a solution. The programmatic prompt architects the solution. By treating English as a programming language, you stop being a user and start being a developer.

2 | Page

image1.png
PROMPT ARCHITECTURE:

+ THE SYNTAX OF SOLUTION
. : 2 ——-——___::_L

[ROLE]: Systen Architect

et et 4 Sl et St s e e B
e e it

2

3

| concusog syte-treotes i sttnstr,
: 1 syit-atreots sesasaer, and et -
7

8= syt it

%i-i
1
|
|
\

1L # LOGIC FLOW:

et sestsocstassatactsel, nelutTopmmmtlt
ot esmatan arescaen it

il

ot ettty SO e o it s)

ctccaows sttty e, Qo
s srmcecmmos i

e ot 2 v 1 1

ot et S et)

it |

